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u Urgent need to process data at scale

u Organic data sources (social media, 
newspapers) offer insights in near real 
time

u But need to contextualize drivers of 
movement for different languages and 
locations

u Machine translation (MT) can help but 
less studied in the context of forced 
migration
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We investigate off-the-shelf machine 
translation tools for forced migration

We translate words and phrases across high- 
and low-resource languages

We analyze trade-offs between cost and 
performance, and provide recommendations 
for data scientists and migration researchers
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u Costs of MT services vary but all significantly lower than human 
translation costs

u Machine translation also generally faster than human translation



u Data consists of 
words/phrases representing 
macro-level drivers of forced 
migration

u Manual translations across 
four languages (English, 
Spanish, Arabic, Portuguese)
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u Seven off-the-shelf machine translation services
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u Eight languages from different regions of recent insecurity

“high”-resource “medium”-resource “low”-resource

English (5) Ukrainian (3) Somali (1)

Arabic (5) Haitian Creole (0)

Spanish (5) Dari (0)

Portuguese (4)
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u Very few languages are available through OpenNMT

u DeepL and Facebook MUSE support more high-resource languages than 
low-resource ones

u Microsoft and Google provide reasonable coverage across the spectrum, 
only services currently available for the lowest-resource language category 
(‘0’)
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Evaluation: one-way vs. round-trip

u When parallel translated data available, one-way evaluation 
(English → Spanish)

u But when parallel translations not available? Round-trip evaluation 
(English → Spanish → English)

u Both show similar trends



u Microsoft MT and Google MT tools show 
similar trends, with Microsoft yielding 
slightly better performance (~80%) than 
Google (~70%)

u GPT-3 shows distinct gap between high- 
and low-resource languages (~70% to ~30%)

u Takeaway: slightly costlier options such 
as Microsoft/Google do bring additional 
advantages over the less expensive GPT-3



u English seems to be the best 
‘source’ language

u This is encouraging because having 
English data can help scale up 
multilingual translations of forced 
migration organic data

u In comparing four higher-resource 
languages (English (5), Spanish (5), 
Arabic (5), Portuguese (4)), Arabic 
does poorly even though higher than 
Portuguese

u Similarly, in comparing three lower-
resource languages (Somali (1), 
Haitian Creole (0), Dari (0)), it is 
Somali that does the poorest



u One possible explanation:

• Both Arabic and Somali belong to 
the Afro-Asiatic language family

• The rest (except Haitian Creole) all 
belong to the Indo-European 
language family

u In short, MT tools work better not 
only for higher-resource languages, 
but also for languages from certain 
language families
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u For drivers of forced migration, precision ranges from 0.8 to 1.0

• “insecurity” is the lowest, perhaps because it has a larger set of words 
than the other topics, and the words may have more synonyms

• “social” is the highest

u Different translation performance across topics
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u While English, Spanish, Portuguese, Arabic generally do well, two 
lower resource languages emerged as surprising target languages

• For the factor “disease”, Somali as a target language obtains 
highest accuracy

• Ukrainian also obtains good translations, possibly due to current 
situation

u We hypothesize that languages that use factor words in a similar 
context are likely to have a higher match rate

u Overall, Microsoft Translator emerged as a stronger MT tool than 
Google Translate




